1. Schäfer W, Abrams P, Liao L, Mattiasson A, Pesce F, Spangberg A, et al. Good urodynamic practices: uroflowmetry, filling cystometry, and pressure-flow studies. Neurourol Urodyn 2002;21:261-74. PMID:
11948720
5. Finazzi Agrò E, Bianchi D, Iacovelli V. Pitfalls in urodynamics. Eur Urol Focus 2020;6:820-2. PMID:
31982363
6. Sullivan J, Lewis P, Howell S, Williams T, Shepherd AM, Abrams P. Quality control in urodynamics: a review of urodynamic traces from one centre. BJU Int 2003;91:201-7. PMID:
12581004
8. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. GradCAM visual explanations from deep networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. 2017:618-26.
9. Liu X, Zhong P, Gao Y, Liao L. Applications of machine learning in urodynamics: a narrative review. Neurourol Urodyn 2024;43:1617-25. PMID:
38837301
10. Karam R, Bourbeau D, Majerus S, Makovey I, Goldman HB, Damaser MS, et al. Real-time classification of bladder events for effective diagnosis and treatment of urinary incontinence. IEEE Trans Biomed Eng 2016;63:721-9. PMID:
26292331
11. Ge Z, Tang L, Peng Y, Zhang M, Tang J, Yang X, et al. Design of a rapid diagnostic model for bladder compliance based on real-time intravesical pressure monitoring system. Comput Biol Med 2022;141:105173. PMID:
34971983
12. Hobbs KT, Choe N, Aksenov LI, Reyes L, Aquino W, Routh JC, et al. Machine learning for urodynamic detection of detrusor overactivity. Urology 2022;159:247-54. PMID:
34757048
13. Lee HJ, Aslim EJ, Balamurali BT, Ng LYS, Kuo TLC, Lin CMY, et al. Development and validation of a deep learning system for sound-based prediction of urinary flow. Eur Urol Focus 2023;9:209-15. PMID:
35835694
15. MacLachlan LS, Rovner ES. Good urodynamic practice: keys to performing a quality UDS study. Urol Clin North Am 2014;41:363-73 vii. PMID:
25063592