Int Neurourol J > Volume 26(1); 2022 > Article |
|
Study No. | Study | Number | Age | Study design | Study duration | Outcomes measured |
---|---|---|---|---|---|---|
Animal studies | ||||||
1 | Aikawa et al. (2003) [14] | 48 Rats | 3–12 Months | Experimental | Days | 1. ROS induced changes |
2. Bladder contractility | ||||||
3. MDA levels | ||||||
2 | Kirpatovsky et al. (2013) [15] | 25 Rats | 6–12 Months | Experimental | Days | 1. ROS induced changes |
2. Extra- and intracellular structure damage | ||||||
3. Effect of antioxidants | ||||||
4. Functional state of bladder detrusor | ||||||
3 | Lin et al. (2011) [16] | 16 Rabbits (100% male) | 15–20 Weeks | Experimental | 8 Weeks | 1. ROS induced changes |
2. MDA, TAC, and urinary 8-OHdG levels | ||||||
3. Bladder weight | ||||||
4 | Nomiya et al. (2012) [17] | 54 Rats (100% male) | 4 Months | Experimental | 8 Weeks | 1. ROS induced changes |
2. Cystometric changes | ||||||
3. 8-OHdG and N-(hexanoyl) lysine levels | ||||||
5 | Radu et al. (2011) [18] | 12 Rabbits (100% male) | 13–15 Weeks | Experimental | Days | 1. ROS induced changes |
2. Bladder contractility | ||||||
3. MDA levels | ||||||
6 | Sezginer et al. (2019) [19] | 30 Rats | 6–12 Months | Experimental | 6 Weeks | 1. ROS induced changes |
2. Bladder contractility and weight | ||||||
3. MDA, NF-kB, Nrf2, and hypoxia-inducible factors levels | ||||||
7 | Su et al. (2016) [20] | 10 Rats (100% male) | 2–12 Months | Experimental | 8 Weeks | 1. ROS induced changes |
2. Cystometric changes | ||||||
3. Proteomic analysis | ||||||
8 | Vital et al. (2016) [21] | Human and rat prostate tissuesa) | Men: older with BPH Rats: 2–18 months | Experimental | 1.5 Years | 1. ROS induced changes |
2. Prostate weight | ||||||
3. 8-OHdG levels | ||||||
9 | Witthaus et al. (2015) [22] | 24 Rats (100% male) | 2–12 Months | Experimental | 8 Weeks | 1. ROS induced changes |
2. Cystometric changes | ||||||
3. MDA, AOPP, and PI3K/Akt levels | ||||||
10 | Yang et al. (2017) [23] | 16 Rats (100% male) | 2–12 Months | Experimental | 8 Weeks | 1. ROS induced changes |
2. Cystometric changes | ||||||
3. Nrf2, heat shock protein 70, glucose-regulated protein 75, PI3K/Akt levels | ||||||
11 | Yuan et al. (2011) [24] | 24 Rats | 3–6 Months | Experimental | 6 Weeks | 1. ROS induced changes |
2. Bladder weight | ||||||
3. MDA levels | ||||||
4. Superoxide dismutase and nitric oxide activity | ||||||
12 | Zhang et al. (2014) [25] | 18 Rabbits (100% male) | 10–20 Weeks | Experimental | 8 Weeks | 1. ROS induced changes |
2. Cystometric changes | ||||||
3. MDA, AOPP, and P2X receptor level | ||||||
13 | Zhao et al. (2016) [26] | 32 Rats (100% male) | 2–12 Months | Experimental | 16 Weeks | 1. ROS induced changes |
2. Cytometric changes | ||||||
3. Muscarinic receptor levels | ||||||
Human studies | ||||||
14 | Antunes-Lopes et al. (2019) [27] | 25 Males | > 60 Years | Case control | 13 Months | 1. ROS induced changes |
2. IPSS score | ||||||
3. Urinary nerve growth factor levels | ||||||
15 | Averbeck et al. (2018) [28] | 38 Patients (100% male) | ≥ 50 Years; mean: 66.4 | Prospective cohort | 2 Years | 1. ROS induced changes |
2. MDA levels | ||||||
3. Urodynamic parameters | ||||||
16 | Azadzoi et al. (2011) [29] | Human bladder tissue | N/A | Experimental | N/A | 1. ROS induced changes |
2. MDA, AOPP, 8-isoprostane, and nitrotyrosine levels | ||||||
3. Superoxide dismutase activity | ||||||
17 | Ener et al. (2015) [30] | 41 Females | Mean control: 42.0 years | Case control | 35 Months | 1. ROS induced changes |
Mean disorder: 43.6 years | 2. TAC, IMA, immunoglobulin E, and C-reactive protein levels | |||||
18 | Guzel et al. (2012) [31] | 79 Patients (100% male; 25 BPH, 23 malignant prostate cancer, 16 LGPIN, 15 HGPIN) | 49–72 Years | Case control | N/A | 1. ROS induced changes |
2. Levels of Pb, Cd, and MDA, in whole blood and prostate tissue | ||||||
19 | Keske et al. (2019) [32] | 67 Patients (0% male; 38 detrusor overactivity, 29 healthy) | Mean: 42.7 years | Prospective cohort | 1.5 Years | 1. ROS induced changes |
2. Ischemia modified albumin and TAC levels | ||||||
20 | Merendino et al. (2003) [33] | 44 Patients (100% male; 1,022 BPH, 22 healthy,) | 55–79 Years | Prospective cohort | Days | 1. ROS induced changes |
Mean control: 62.1 years | 2. MDA and prostate specific antigen levels | |||||
Mean BPH: 65.8 years | 3. Prostate inflammation and modifications | |||||
21 | Ren et al. (2015) [34] | 60 Patients (100% male) | Control tissues: 37–46 years | Case control | N/A | 1. ROS induced changes |
2. Cell apoptosis | ||||||
BPH tissues: 67–86 years | 3. Hypoxia-inducible factor, AR gene, vascular endothelial growth factor, IL-8 levels |
ROS, reactive oxygen species; MDA, malondialdehyde; TAC, total antioxidant capacity; 8-OhdG, 8-hydroxy-2’-deoxyguanosine; NF-kB, nuclear factor kappa B; Nrf2, nuclear factor erythroid 2-related factor 2; AOPP, advanced oxidation protein products; PI3K/Akt, phosphoinositide 3-kinase/protein kinase B; IPSS, International Prostate System Score; IMA, ischemia modified albumin; LGPIN, low-grade prostatic intraepithelial neoplasia; HGPIN, high-grade prostatic intraepithelial neoplasia; BPH, benign prostatic hyperplasia; IL-8, interleukin-8; P2X, purinoceptor; N/A, not available.
Study No. | Study | Lower urinary tract disorder (s) evaluated | Lower urinary tract structural and functional changes | Molecular changes |
---|---|---|---|---|
Animal studies | ||||
1 | Aikawa et al. (2003) [14] | BPH | Functional: | MDA↑as H2O2↑and age↑ |
- H2O2 caused dose dependent↓in maximal contraction of bladder strips. | MDA levels (pmol/mg protein) in 12-month-old vs. 3-month-old rats | |||
- Older rat bladders were more sensitive to H2O2 damage. | Control: 400 vs. 420 | |||
0.25% H2O2: 1,000 vs. 800 | ||||
0.50% H2O2: 1,200 vs. 1,000 | ||||
1.00% H2O2: 1,600 vs. 1,400 | ||||
2 | Kirpatovsky et al. (2013) [15] | AUR | Structural: | ROS↑ |
- Extra- and intracellular structure damage; antioxidants can↓severity. | ROS levels (arbitrary units via dichlorofluorescein fluorescence) in control vs. AUR | |||
- AUR is associated with deterioration of the bladder blood supply. | ||||
Functional: | Mucosa: 0.5 vs. 17.8 | |||
- Detrusor excitability. | Detrusor: 4.9 vs. 34.7 | |||
3 | Lin et al. (2011) [16] | PBOO | Structural: | MDA↑, TAC↓, and 8-OHdG↑ |
- PBOO mediates metabolic dysfunction and oxidative damage in bladder smooth muscle. | Levels in control, 4 weeks, 8 weeks | |||
MDA (μM): 25-30, 45, 65 | ||||
- Bladder weight↑due to PBOO (control: 2 g, 2 weeks: 7 g, 4 weeks: 9 g, 8 weeks: 12 g). | TAC (μmol/L): 2,500, 1,700, 1,500 | |||
8-OHdG (ng/creatinine): 150, 350, 375 | ||||
4 | Nomiya et al. (2012) [17] | I/R | Structural: | 8-OHdG↑, N-(hexanoyl) lysine↑(immunohistochemical staining; qualitative observation) |
- Thickening and fibrosis in iliac artery and bladder arterioles. | ||||
Functional: | ||||
- 24- Hour void frequency↑(11.5 vs. 17.5). | ||||
- VV↓(1.39 mL vs. 0.85 mL). | ||||
- Micturition interval↓(7.5 min vs. 4.68 min). | ||||
5 | Radu et al. (2011) [18] | I/R; PBOO | Functional: | MDA↑due to ischemia-reperfusion |
- Mitochondrial oxidative damage, associated with↓contractility. | MDA levels (μm/mg) in control vs. ischemia/reperfusion | |||
Muscle mitochondria: 6 vs. 12 | ||||
Muscle homogenate: 7 vs. 14 | ||||
Mucosa mitochondria: 4 vs. 23 | ||||
Mucosa homogenate: 17 vs. 30 | ||||
6 | Sezginer et al. (2019) [19] | PBOO | Structural: | MDA↑, NF-kB↑, Nrf2↑, HIF-1a↑, HIF-2B/Arnt2↑ |
- Bladder weight↑in rats with severe obstruction (2–2.5×greater). | Levels in control vs. PBOO | |||
MDA (nM/g protein): 15 vs. 31 | ||||
Functional: | NF-kB mRNA expression (RFUs): 100 vs. 200 | |||
- Contractile responses↓in bladder strips in severe obstruction (~82% smaller). | Nrf2 mRNA expression (RFUs): 100 vs. 180 | |||
HIF-1a (HIF-1a/GAPDH): 0.6 vs. 1.1 | ||||
HIF-2B/Arnt2 (Arnt2/GAPDH): 0.5 vs. 0.75 | ||||
7 | Su et al. (2016) [20] | I/R | Structural: | Ischemic bladder proteins↓(172 upregulated proteins and 527 downregulated proteins) |
- Swollen mitochondria, mitochondrial membrane↓, mitochondrial granules↓, collagen deposition↑. | ||||
Functional: | ||||
- Spontaneous contractions. | ||||
- Bladder blood perfusion in mL/min/100 g↓(9.8 vs. 3.8). | ||||
- Bladder compliance in mL/cm H2O↓(0.132 vs. 0.093). | ||||
8 | Vital et al. (2016) [21] | BPH | Structural: | 8-OHdG↑ |
- BPH↑prostate weight (< 12 months: 80 mg vs. 100 mg; > 12 months: 100 mg vs. 150 mg). | 8-OHdG levels (ng/5 μg DNA) in control vs. BPH | |||
- Stromal thickening. | 1.0 vs. 1.3 | |||
9 | Witthaus et al. (2015) [22] | I/R | Structural: | MDA↑, AOPP↑, PI3K/Akt↑ |
- Swollen mitochondria with degraded granules, mitochondrial membrane↓in bladder tissue. | Levels in control, sham, ischemia | |||
Functional: | MDA (pmol/mg): 17, 16, 27 | |||
- Spontaneous contractile activity of the bladder. | AOPP (μM): 40, 50, 78 | |||
- MF per 10 hours of sleep time↑(6.3 vs. 10.1). | PI3K/Akt (optical density): 1.0, 0.9, 1.7 | |||
- Total urine production per 24 hours↑(13.2 mL vs. 19.9 mL). | ||||
- Premicturition pressure↑(11.6 cm H2O vs. 15.7 cm H2O). | ||||
- Bladder compliance↓(0.134 mL/cm H2O vs. 0.099 mL/cm H2O). | ||||
10 | Yang et al. (2017) [23] | I/R | Functional: | Nrf2 activity↓, heat shock protein 70↑, glucose-regulated protein 75↑, PI3K/Akt↑ |
- Altered void patterns. | ||||
- BBF↓in mL/m/100- g tissue (10.2 vs. 4.6). | Levels in control vs ischemia | |||
- MF↑(11.7 vs. 17.6). | Nrf2 activity 25% control | |||
- VV↓(1.30 mL vs. 0.86 mL). | Heat shock protein 70 (ng/mL): 0.5 vs. 1.9 | |||
- BC↓(1.66 mL vs. 1.20 mL). | Glucose-related protein 75 (relative density): 0.4 vs. 1.0 | |||
- Mitochondrial respiration rate↓in nmol/min/μg (0.68 vs. 0.38). | PI3K/Akt (relative density): 0.20 vs. 0.58 | |||
11 | Yuan et al. (2011) [24] | PBOO | Structural: | MDA↑, superoxide dismutase↓, nitric oxide synthase↓in PBOO |
- PBOO is associated with↑bladder weight (control: 0.14 g, 3 weeks: 0.37 g, 6 weeks: 0.70 g). | Levels in control, 3 weeks PBOO, 6 weeks PBOO | |||
- Collagen deposits and hypertrophy. | MDA (nmol/mg-prot): 0.24, 0.32, 0.52 | |||
Superoxide dismutase activity (U/mg-prot): 17.67, 14.88, 11.72 | ||||
Nitric oxide synthase activity(U/mg-prot): 1.373, 0.616, 0.558 | ||||
12 | Zhang et al. (2014) [25] | I/R | Structural: | MDA↑, AOPP↑, P2X↑ |
- Intimal thickening and luminal narrowing of iliac arteries. | Levels in control vs. ischemia | |||
Functional: | MDA (pmol/mg): 15 vs. 30 | |||
- BBF↓in mL/min/100 g (7.5 vs. 3.2). | AOPP (μM): 38 vs. 70 | |||
- BC↓(24.9 mL vs. 16.2 mL). | P2X levels (optical density): | |||
- Spontaneous contractions/10 min↑(1.2 vs. 7.4). | P2X1: 0.3 vs. 0.5, P2X2: 0.5 vs. 0.7, P2X3: 0.4 vs. 0.7, P2X4: 0.5 vs. 0.7, P2X5: 0.3 vs. 0.5, P2X7: 0.2 vs. 0.3 | |||
13 | Zhao et al. (2016) [26] | I/R | Structural: | After 8 weeks, muscarinic M2 expression↑; after 16 weeks, muscarinic M1 and M2 expression↑, M3 expression↓ |
- Swollen, degenerating axons with collagen invasion of nerve fibers. | Relative density in sham vs. ischemia | |||
- Neural density↓. | 8 Weeks M1: 0.5 vs. 0.7 (Insignificant) | |||
Functional: | 8 Weeks M2: 0.4 vs. 0.9 | |||
- 8 Weeks: MF↑(13.3 vs. 18.2), VV↓(1.28 mL vs. 0.9 mL), BC↓(1.68 mL vs. 1.22 mL), BBF↓(10.8 mL vs. 5.3 mL). | 8 Weeks M3: 0.6 vs. 0.7 (Insignificant) | |||
- 16 Weeks: MF↓(14.1 vs. 9.3), post- void residual volume↑(0.15 mL vs. 0.29 mL), BC↑(1.80 mL vs. 2.55 mL), micturition pressure↓(49.6 cm H2O vs. 41.5 cm H2O), BBF↓(8.9 mL vs. 3.4 mL). | 16 Weeks M1: 0.3 vs. 0.8 | |||
16 Weeks M2: 0.4 vs. 0.8 | ||||
- Spontaneous detrusor activity and fluctuations in intravesical pressure. | 16 Weeks M3: 0.9 vs. 0.4 | |||
Human studies | ||||
14 | Antunes-Lopes et al. (2019) [27] | I/R | Functional: | Nerve growth factor↑(normalized to urine creatinine): 2.9 vs. 3.7 |
- Total IPSS↑(8 vs. 11). | ||||
15 | Averbeck et al. (2018) [28] | BOO due to BPH | Functional: | MDA↑ |
- Bladder sensation↑34.2%, bladder compliance↓31.6%, cystometric capacity↓18.4%, detrusor overactivity 28.9%, urgency urinary incontinence↑13.2%, peak urinary flow↓92.1%, post- void residual volume↑57.9%, detrusor underactivity 44.7%. | MDA Levels (pmol/mg) in BOO and LUTS | |||
Low grade BOO: 100 | ||||
High grade BOO: 250 | ||||
- 18.4% of patients presented with↓bladder sensation, which was associated with↓catalase enzymes in the bladder wall. | Mild LUTS: 111.93 | |||
Severe LUTS: 290.93 | ||||
16 | Azadzoi et al. (2011) [29] | I/R | Structural: | MDA↑, AOPP↑, 8-isoprostane↑, nitrotyrosine↑, superoxide dismutase activity↓ |
- Enlarged mitochondria with degraded or lost cristae and cytoplasmic lysosomes↑in cells exposed to oxidative stress. | Levels in normoxia vs. oxidative stress | |||
MDA (pmol/mg): 0.4 vs. 0.7 | ||||
AOPP (μM): 55 vs. 65 | ||||
8-isoprostane (pg/mL): 55 vs. 63 | ||||
Nitrotyrosine (nM): 4.0 vs. 6.0 | ||||
Superoxide dismutase activity (%): 29 vs. 25 | ||||
17 | Ener et al. (2015) [30] | I/R | Structural: | TAC↓, IMA↑, immunoglobulin E↑, C-reactive protein↑ |
- Glomerulations↑ | Levels in control vs. ischemia | |||
TAC (mM/L): 2.1 vs. 1.7 | ||||
IMA (absorbance units): 0.51 vs. 0.56 | ||||
Immunoglobulin E (IU/mL): 82.8 vs. 140 | ||||
C-reactive protein (mg/L): 0.42 vs. 0.52 | ||||
18 | Guzel et al. (2012) [31] | BPH; malignant prostate cancer; LGPIN; HGPIN | Functional: | MDA↑as Cd↑and Pb↑in malignant prostate cancer, LGPIN, and HGPIN, and BPH |
- Molecular damage and alteration of cell homeostasis. | Levels in BPH, malignant prostate cancer, LGPIN, and HGPIN | |||
- Carcinogenic metals inhibit DNA repair proteins. | Tissue MDA (nmol/mg protein): 4.67, 5.43, 5.73, 5.96 | |||
- ROS and reactive nitrogen species induce genes that promote proliferation and confer apoptosis resistance. | Plasma MDA (nmol/mg protein): 5.56, 6.64, 6.39, 6.66 | |||
Tissue Cd (μg/g wet weight): 1.19, 1.29, 1.29, 1.29 | ||||
Plasma Cd (μg/g wet weight): 1.10, 1.22, 1.22, 1.23 | ||||
Tissue Pb (μg/g wet weight): 25, 34, 34, 36 | ||||
Plasma Pb (μg/g wet weight): 25, 31, 31, 34 | ||||
19 | Keske et al. (2019) [32] | Detrusor overactivity | Functional: | IMA↑, TAC↓ |
- Ischemia/oxidative damage leads to various lower urinary tract dysfunctions. | Levels in control vs. detrusor overactivity | |||
IMA (absorbance units): 0.530 vs. 0.614 | ||||
TAC (mM Trolox Eqv/L): 2.1 vs. 1.8 | ||||
20 | Merendino et al. (2003) [33] | BPH | Functional: | MDA↑and prostate specific antigen↑in BPH |
- Circulating MDA level↑is a marker of lipid peroxidation and inflammation of prostate epithelium. | MDA levels (nmol/ml) in control vs. BPH | |||
- MDA level↑may explain base modifications in BPH epithelium. | 0.97 vs. 2.12 | |||
21 | Ren et al. (2015) [34] | BPH | Functional: | ROS↑, HIF-1a↑, AR gene↑, vascular endothelial growth factor↑, IL-8↑in BPH prostatic tissues |
- Vascular aging↑local ischemia and hypoxia. | Levels (RFUs) in control vs. BPH | |||
- Hypoxic conditions lead to differential gene expression. | ROS: 40.947 vs. 82.727 | |||
- ROS leads to greater apoptosis. | HIF-1a: 0.612 vs. 2.926 | |||
AR: 1.236 vs. 2.918 | ||||
Vascular endothelial growth factor: 1.094 vs. 3.035 | ||||
IL-8: 1.201 vs. 1.970 |
BPH, benign prostatic hyperplasia; MDA, malondialdehyde; AUR, acute urinary retention; ROS, reactive oxygen species; PBOO, partial bladder outlet obstruction; TAC, total antioxidant capacity; VV, voided volume; 8-OhdG, 8-hydroxy-2’-deoxyguanosine; I/R, ischemia/reperfusion; NF-kB, nuclear factor kappa B; RFUs, relative fluorescence units; BBF, bladder blood flow; BC, bladder capacity; Nrf2, nuclear factor erythroid 2-related factor 2; HIF-1a, hypoxia-inducible factor 1-alpha; HIF-2B/Arnt2, HIF-mediated aryl hydrocarbon receptor nuclear translocator 2; AOPP, advanced oxidation protein products; PI3K/Akt, phosphoinositide 3-kinase/protein kinase B; MF, micturition frequency; IPSS, International Prostate System Score; BOO, bladder outlet obstruction; LUTS, lower urinary tracts symptoms; LGPIN, low-grade prostatic intraepithelial neoplasia; HGPIN, high-grade prostatic intraepithelial neoplasia; IMA, ischemia modified albumin; IL-8, interleukin-8; P2X, purinoceptor; M1, M2, M3, muscarinic receptors.
Study No. |
Biomarker |
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ROS | MDA | Other modified lipidsa) | Nitrotyrosine | 8-OHdG | TAC | Nrf2 | IMA | HIFs | AOPP | PI3K/Akt | Hsp 70 | GRP 75 | P2X | M receptorsb) | NGF | Enzymes (NOS, SOD) | Heavy Metals (Pb, Cd) | Inflammatory Markersc) | |
1 | ↑ | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2 | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3 | ↑ | ↑ | - | - | ↑ | ↓ | - | - | - | - | - | - | - | - | - | - | - | - | - |
4 | ↑ | - | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5 | ↑ | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6 | ↑ | ↑ | - | - | - | - | ↑ | - | ↑ | - | - | - | - | - | - | - | - | - | ↑ |
7 | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8 | ↑ | - | - | - | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9 | ↑ | ↑ | - | - | - | - | - | - | - | ↑ | ↑ | - | - | - | - | - | - | - | - |
10 | ↑ | - | - | - | - | - | ↓ | - | - | - | ↑ | ↑ | ↑ | - | - | - | - | - | - |
11 | ↑ | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ↓ | - | - |
12 | ↑ | ↑ | - | - | - | - | - | - | - | ↑ | - | - | - | ↑ | - | - | - | - | - |
13 | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | ↑1,2;↓3 | - | - | - | - |
14 | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ↑ | - | - | - |
15 | ↑ | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16 | ↑ | ↑ | ↑ | ↑ | - | - | - | - | - | ↑ | - | - | - | - | - | - | ↓ | - | - |
17 | ↑ | - | - | - | - | ↓ | - | ↑ | - | - | - | - | - | - | - | - | - | - | ↑ |
18 | ↑ | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ↑ | - |
19 | ↑ | - | - | - | - | ↓ | - | ↑ | - | - | - | - | - | - | - | - | - | - | - |
20 | ↑ | ↑ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21 | ↑ | - | - | - | - | - | - | - | ↑ | - | - | - | - | - | - | - | - | - | ↑ |
ROS, reactive oxygen species; MDA, malondialdehyde; 8-OhdG, 8-hydroxy-2'-deoxyguanosine; TAC, total antioxidant capacity; Nrf2, nuclear factor erythroid 2-related factor 2; IMA, ischemia modified albumin; HIFs, hypoxia-inducible factors (HIF-1a, HIF-2b/Arnt2); AOPP, advanced oxidation protein products; PI3K/Akt, phosphoinositide 3-kinase/protein kinase B; Hsp70, heat shock protein 70; GRP75, glucose-regulated protein 75; P2X, purinoceptor; M, M1, M2, M3, muscarinic receptors; NGF, nerve growth factor; NOS, nitric oxide synthase; SOD, superoxide dismutase.