Letter to the Editor

We read with interest a recent article by Weis et al. [1] assessing the outcomes and complications of cuff downsizing in the treatment of worsening or persistent urinary incontinence after Artificial Urinary Sphincter (AUS) implantation. In the study, the authors noted that cuff downsizing can improve the continence status in half of the patients and improve the quality of life of more than half of the patients undergoing cuff downsizing. This paper is undoubtedly an important voice in the debate on the optimization of the treatment of refractory or persistent urinary incontinence after AUS implantation. As this debate has been ongoing for decades and is probably not going to be resolved in the near future, we feel that a few aspects of this study should be emphasized.

The authors do not distinguish the patients with refractory and persistent incontinence, however, it should be noted, that persistent incontinence may be due to suboptimal parameters of primary AUS, e.g., cuff size or pressure-regulating balloon type.

Until recently urethral atrophy was considered the main cause of nonmechanical failure of AUS. As its existence is being questioned, the pathophysiology of recurrent urinary incontinence is not clear [2]. The treatment remains a clinical challenge, with several potentially therapeutic options proposed including increasing the amount of fluid in the system, changing the balloon reservoir for a higher pressure one, downsizing the cuff diameter, repositioning the cuff, transcorporal insertion of the balloon reservoir for a higher pressure one, downsizing the cuff, and persistent incontinence may be due to suboptimal parameters of primary AUS, e.g. cuff size or pressure-regulating balloon type.

Subcuff urethral capsulotomy is a relatively new approach challenging traditional methods of dealing with recurrent incontinence, first described by Bugeja et al. [2] and then confirmed by Pearlman et al. [7]. Midline ventral incision of the capsule and blunt dissection of the urethra from the capsule release the urethral diameter and enable replacement AUS involving a new cuff of the same size used previously, and a new pressure-regulating balloon rated for the same pressure rating.

Commentary on “Outcomes and Complication Rates of Cuff Downsizing in the Treatment of Worsening or Persistent Incontinence After Artificial Urinary Sphincter Implantation”

Łukasz Białek, Michał Skrzypczyk
Department of Urology, Centre for Postgraduate Medical Education, Warsaw, Poland

Corresponding author: Michał Skrzypczyk
https://orcid.org/0000-0001-9781-1907
Department of Urology, Centre for Postgraduate Medical Education, Warsaw, Poland
Email: michal.skrzypczyk@gmail.com

Copyright © 2024 Korean Continence Society www.einj.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
as before. These maneuvers seem to have a favorable effect on urethral erosion, but there is a need for multicenter studies with more data to confirm this.

Moreover, Cousin et al. [6], assessed the aforementioned management strategies in recurrent urinary incontinence, demonstrating the best functional outcomes and the lowest re-intervention rate among patients in whom all components of the artificial sphincter were changed. This may be due to the fact that the continence quality depends not only on a well-fitting cuff but requires proper function of all components of the device.

• Conflict of Interest: The authors have nothing to disclose.

REFERENCES